テクノロジー > 第69回 Federated Learning:モバイルデバイスを用いた分散学習技術(パート3)

※この記事は読者によって投稿されたユーザー投稿です:
  • 編集部の見解や意向と異なる内容の場合があります
  • 編集部は内容について正確性を保証できません
  • 画像が表示されない場合、編集部では対応できません
  • 内容の追加・修正も編集部では対応できません

CTC教育サービスはコラム「グーグルのクラウドを支えるテクノロジー > 第69回 Federated Learning:モバイルデバイスを用いた分散学習技術(パート3)」を公開しました。

###

はじめに
 前回に引き続き、2019年に公開された論文「Applied Federated Learning: Improving Google Keyboard Query Suggestions」を元にして、モバイルデバイスを用いた分散学習技術である「Federated Learning」の適用事例を紹介します。今回は、実際の学習状況や予測精度を示すデータについて説明します。

学習に使用するデバイスの選択

 Federated Learningの処理の流れについては、第67回(パート1)の記事で簡単に説明しました。学習ジョブを管理するサーバーは、一定の条件を満たすデバイスに学習処理を依頼した後に、それぞれの学習結果をサーバー側で集約します。学習に使用するデータはそれぞれのデバイス上で収集されたものですので、学習処理を依頼するデバイスの選択は、当然ながら、学習結果に影響を及ぼします。冒頭の論文には、次のようなデバイスの選択条件が示されています。

・WiFiネットワークに接続されており、充電中でスリープ状態になっている
・2GB以上のメモリーを搭載していて、Android SDK level 21以上がインストールされている
・言語設定がen-US、もしくは、en-CAになっている

この続きは以下をご覧ください
https://www.school.ctc-g.co.jp/columns/nakai2/nakai269.html

この記事が役に立ったらシェア!
メルマガの登録はこちら Web担当者に役立つ情報をサクッとゲット!

人気記事トップ10(過去7日間)

今日の用語

eCPM
「eCPM」はeffective Cost Per Milleの略。「有効CPM ...→用語集へ

インフォメーション

RSSフィード


Web担を応援して支えてくださっている企業さま [各サービス/製品の紹介はこちらから]