算数が苦手なマーケター向け「算数基礎講座」

引いたくじを戻さない場合の確率計算は? 2回引いて同じになる割合とは

「5種類、4個ずつのドーナツ。くじを2回引いて、同じ種類である確率は?」この問題を解くには、引いた後に戻さない「非復元抽出」の概念が重要だ。事象が連続する場合には積の法則を、異なるパターンに分けて考える時には和の法則を適用し、特定の事象が起こらない確率を求める際には余事象の法則を使う。算数が苦手な人もこの記事で確率の基礎をしっかり学ぼう!

5種類×4個のドーナツ、チョコ味を2個食べたい!

先輩

今日の発表会お疲れさまー。ドーナツの差し入れでーす。今、部内に何人いる?

アユム

(やったああ! ドーナツ大好き! チョコドーナツ食べたいな!)ありがとうございます〜!! 先輩を含めて10人です!

先輩

5種類を4個ずつ買ってきたから、1人2個ずつだね。アユムさんの好きなチョコドーナツも入ってるよ。

アユム

今日、いつもよりがんばったので、自分へのご褒美として、先にチョコドーナツを2個、もらってもいいですか?(ワクワク)

先輩

いや、ドーナツの選択は公平にしよう。くじ引きをつくったよ。

アユム

え~。くじで決めるんですか…。あ、前回学んだ確率の求め方から計算すると、2個ともチョコドーナツをもらえる確率は4%ですね! エッヘン。

先輩

違うよ。アユムさんが2個チョコドーナツを選択できる確率は、 3 95 だよ。

アユム

なんで?(4%じゃないの? さらに、なんか、いかつい分数でいわれた…)

先輩

4%より低い3%強だね。では、がんばってるアユムさんに、先に2回、くじを引く権利をあげるね。

アユム

(ちょっと確率が気になりすぎて、くじを引けない…)

昔から、算数も数学も苦手なアユムは、希望が叶ってマーケティング部門に異動してきました。Web担で見るような「すごいマーケターになりたい!」と胸を躍らせていたが、配属後、理想と現実のギャップに苛まれることに。

その確率、どういう計算になるの???

そこに登場したのは、大人向け数学教室「大人塾」を運営し、数学苦手な社会人に対して指導をしているモリさん。

この記事を読むべき人:確率の意味を理解していない方
この記事を読む必要がない人:確率をすぐに算出できる方
この記事でわかること:引いたくじを戻さない場合の確率の求め方

2個ともチョコドーナツをもらえる確率は?

アユム

モリさーん! 20個のうち、2個のチョコドーナツが当たる確率がよくわかりません!!

モリ

ちょっと何を言っているかよくわからないです。

アユム

5種類4個ずつ20個のドーナツがあります。そのうち、4個がチョコドーナツです。くじを引いて、公平にドーナツを分けるのですが、最初に2回連続で引いたとき、どちらもチョコドーナツになる確率を求めたいです!

確率は ことがらが起こる場合の数 すべての場合の数 で求まりますよね。
となると、積の法則を利用して、

4 20 × 4 20  =  1 25  = 4% じゃないんですか?!

 

モリ

答えは違いますが、確率の考え方は身についてきているようですね。

アユム

えー、違うんですか。先輩からは、なんかいかつい分数で確率をいわれたんです。

モリ

(いかつい分数!?)

アユム

どういう計算なんですかね?

モリ

前回確率は分数で考えたほうがいいという話をしましたね。

アユム

はい、でも、前回は分数を書くのが面倒だったから、小数で書いたんですよね?

モリ

(はっ、思っていても言わなかったことを!!)

アユム

今回の確率は、前回の確率の求め方と何が違うんですか?

1回くじを引くと「すべての場合の数」がかわる

モリ

前回のデジタルくじは、常に一定の確率で当たるように調整できます。今回のドーナツの場合との違いは何ですか。

アユム

う~ん、あ、最初にもらったドーナツを持って行ってしまうから、一定の「すべての場合の数」じゃないということですか?

モリ

そうです、その通りです。この引き方を「非復元抽出」といいます。

アユム

(火吹くゲンさんによる抽出?)

モリ

まあ、言葉は覚えなくてもいいですが、戻さないということだけを意識してください。
最初にくじを引くアユムさんが、2個ともチョコドーナツをゲットするケースを考えましょう。1回目のくじ引きで、アユムさんがチョコドーナツをもらう確率は?

アユム

ことがらが起こる場合の数 すべての場合の数 4 20 1 5 です。

モリ

アユムさんが1個目のチョコドーナツをゲットした後、ドーナツの数は全部でいくつですか?

アユム

19個ですね。

モリ

チョコドーナツの数は?

アユム

1個もらったから3個ですね。

モリ

ということは、2個目にチョコドーナツをもらう確率は?

アユム

あ、 3 19 ですね。

モリ

ゴホン、ゴホン…とすると?

アユム

連続しているので、積(せき)の法則ですね!
だから 4 20 × 3 19 3 95 いかつい分数になりました!
なるほど~! 2個目にドーナツをもらうときに、すべての場合の数が変わるだけでなく、チョコドーナツの数も変わるので、 4 20 ではなくなるんですね! 納得しました!

2回目にチョコドーナツ以外が当たる確率は?

モリ

それでは、次の問題です。アユムさんは、1回目のくじでチョコドーナツを当てました! このとき、2回目にチョコドーナツ以外が当たる確率は?

アユム

全体の数は、19個。チョコドーナツ以外は、16個。

つまり、 16 19 ですね。

モリ

となると、1回目にチョコドーナツが当たって、2回目にチョコドーナツ以外が当たる確率は?

アユム

4 20 × 16 19 16 95

モリ

さらに、1回目にチョコドーナツが当たって、2回目にクリームドーナツが当たる確率は?

アユム

2回目は全体の数が19、クリームドーナツは4個だから
4 20 × 4 19 4 95

モリ

はい、その通りです。 分数で考えると、すべての場合の数を分母に、起こることがらの数を分子に入れるだけでOKです! 小数で計算するよりも、確率を求めるほうが楽になりますね。

アユム

なるほど、だから、分数で考えるのが便利といっていたんですね!

1個だけチョコドーナツが当たる確率は?

モリ

このまま続けましょう。先ほど求めた、1回目のくじで当たったのがチョコドーナツで、2回目がそれ以外のドーナツのとき、確率は 16 95 でしたね。

アユム

この話の流れだと、1個だけチョコドーナツが当たる確率を求めよ、ですか?

モリ

すばらしいですね。求めましょう。

アユム

求めよ、さらば与えられん、ということで1回目にチョコ、2回目にそれ以外が当たる確率は
4 20 × 16 19 16 95
1回目にチョコ以外、2回目にチョコが当たる確率は?
16 20 × 4 19 16 95
よって、和の法則を利用して、 16 95 16 95 32 95  ですね!

少なくとも1個はチョコドーナツが当たる確率は?

モリ

次は、「少なくとも」です。

アユム

考え方は前回と同じですよね。「全体の事象の数」から「起こらない事象」を引いて求める方法でしたよね?

モリ

その通りです! 余事象です。私が大好きなアジアゾウではありません。

アユム

(モリさん、ゾウさんアイコンになりたいのでこの話題をしているのでは……)

モリ

ゾウです。よくわかりましたね。

アユム

(心を読まれた!?)

モリ

それはおいておいて、少なくとも1個はチョコドーナツということは、1個、または2個、ですよね。
せっかくここまでで、2個ともチョコドーナツ、1個だけチョコドーナツの確率を出しているので、和の法則を利用して、求めますか。

アユム

はい、2個ともチョコドーナツが当たる確率は 3 95 、 1個だけチョコドーナツが当たる確率は 32 95 なので、それを足して 35 95 、約分して 7 19 ですね。

モリ

これを、余事象で求めてみましょうか。

アユム

はい。「少なくとも1個はもらえる」の余事象は、「2個ともチョコドーナツではない」なので、1回目は、全部で20個のドーナツのうち、16個がチョコ以外、2回目は、ドーナツの数は19個になって、チョコドーナツ以外のドーナツの数は……。

モリ

そう、1個減っていますね。

アユム

ですよね、15個ですね。

つまり 16 20 × 15 19 12 19   これを1から引くと…、
1- 12 19 7 19  先ほど求めた答えと同じになりました!

モリ

ゾーウ! 「余事象」「和の法則」「積の法則」を忘れてしまったら、前々回も復習してみてくださいね。

元に戻す「復元抽出」と戻さない「非復元抽出」

モリ

今回のドーナツのくじ引きのように、取り出したくじを元に戻さず続行するくじ引きのようなケースを「非復元抽出」といいます。

アユム

分母の「すべての場合の数」を変える方法ですか?

モリ

はい。数学の問題だと「同時に」などという文言があるときも、非復元抽出です。「赤玉4個、白玉6個が入っている袋から同時に2個とりだすとき、2個とも白玉である確率を求めなさい」とかですね。

アユム

あー! 高校のときに、「同時に」って出てきたのを思い出しました! 同時という言葉に、イマイチ納得できなかったような。

モリ

はい、これは、「同時に」という言葉が、同じタイミングで袋から取り出しているので、袋の中に戻していない、さらに、スローモーションで見たら、同時とはいえ、順番があると考えて、非復元抽出なんです。

アユム

なるほど。同時にということで、戻していないのがポイントなんですね。

モリ

一方、元に戻す方法を「復元抽出」とよびます。

アユム

非にあらず、なんですね。

モリ

取り出したものを戻します。

アユム

前回の記事のデジタルくじや、サイコロを転がすのも、復元抽出に当たるんですね。

モリ

その通りです。基本的な確率を求めるときに、復元抽出なのか、非復元抽出なのかを意識することが大切です。

アユム

毎回、事柄が起こる場合の数とすべての場合の数を気にして、分数の形にすればいいんですよね。

モリ

はい、これからの時代、ビジネスに確率は欠かせないといわれています。確率の基本的な考え方をしっかり身につけておきましょうね。

ポイント

  • 確率は、 ことがらが起こる場合の数 すべての場合の数 で求める
  • 非復元抽出とは、引いたもの(起きたこと)をもとに戻さないこと
  • 連続している(同時に起こる)ときは、積の法則を利用する
  • パターンに分けて考えるときは、和の法則を利用する
  • 特定の事象が起こらないことを考えるときは、余事象

今日の問題をおさらい

Q1.5種類×4個のドーナツくじ。最初に2回くじを引いて、どちらもチョコドーナツの確率は?

4 20 × 3 19 3 95
答え: 3 95

Q2.1回目にチョコドーナツが当たって、2回目にチョコドーナツ以外が当たる確率は?

4 20 × 16 19 16 95
答え: 16 95

Q3.1回目にチョコドーナツが当たって、2回目にクリームドーナツが当たる確率は?

4 20 × 4 19 4 95
答え 4 95

Q4.1個だけチョコドーナツが当たる確率は?

1個だけチョコドーナツが当たる確率は?
4 20 × 16 19 16 95
1回目にチョコ以外、2回目にチョコが当たる確率は
16 20 × 4 19 16 95
よって、和の法則を利用して
16 95 × 16 95 32 95
答え: 32 95

Q5.少なくとも1個、チョコドーナツが当たる確率は?

2個ともチョコドーナツは 3 95
1個だけチョコドーナツは 32 95
3 95 32 95 35 95 、約分して 7 19
答え: 7 19

この記事が役に立ったらシェア!
メルマガの登録はこちら Web担当者に役立つ情報をサクッとゲット!

今日の用語

スマートフォン
携帯電話としての通話機能だけでなく、パソコンのように多くの機能を有している小型の ...→用語集へ

インフォメーション

RSSフィード


Web担を応援して支えてくださっている企業さま [各サービス/製品の紹介はこちらから]