グーグルのクラウドを支えるテクノロジー > 第85回 Autopilot:クラスタ管理システムのオートスケーリング機能(パート2)
2020/7/14 18:19
※この記事は読者によって投稿されたユーザー投稿です:
- 編集部の見解や意向と異なる内容の場合があります
- 編集部は内容について正確性を保証できません
- 画像が表示されない場合、編集部では対応できません
- 内容の追加・修正も編集部では対応できません
CTC教育サービスはコラム「グーグルのクラウドを支えるテクノロジー > 第85回 Autopilot:クラスタ管理システムのオートスケーリング機能(パート2)」を公開しました。
###
はじめに
前回に続いて、2020年に公開された論文「Autopilot: Workload Autoscaling at Google Scale」を元にして、Googleのデータセンターのクラスター管理システム(Borg)で用いられる、オートスケーリングの仕組み(Autopilot)を紹介します。今回は、水平スケーリングの仕組みを説明した後に、Autopilotの効果を示す統計データを紹介します。
水平スケーリングの仕組み
前回の記事の冒頭で説明したように、Borgのクラスターでジョブ(アプリケーション)を実行すると、複数の「Task」が起動して、自動的にロードバランスが行われます。この際に、ジョブ全体の負荷に応じて、Taskの数を自動調整するのが水平スケーリングの役割です。Autopilotでは、次の2種類の方法でTask数を調整することができます。
・CPU使用量:Taskが稼働するコンテナのCPU使用量(平均値)が指定値に近くなるように調整します。
・ユーザー定義関数:モニタリングデータから必要なTask数を計算する関数をユーザー自身が用意します。
この続きは以下をご覧ください
https://www.school.ctc-g.co.jp/columns/nakai2/nakai285.html
ソーシャルもやってます!