グーグルのクラウドを支えるテクノロジー > 第53回 ハイパーパラメーターチューニングの新手法(パート1)
- 編集部の見解や意向と異なる内容の場合があります
- 編集部は内容について正確性を保証できません
- 画像が表示されない場合、編集部では対応できません
- 内容の追加・修正も編集部では対応できません
CTC教育サービスはコラム「グーグルのクラウドを支えるテクノロジー > 第53回 ハイパーパラメーターチューニングの新手法(パート1)」を公開しました。
###
はじめに
今回からは、数回に分けて、2018年に公開された論文「Population Based Training as a Service」、および、それに深く関連する2017年の論文「Population Based Training of Neural Networks」を紹介していきます。前者は、機械学習におけるハイパーパラメーターチューニングの新しい手法である、「Population Based Training」をクラウドサービスとして提供しようという提案で、Google Cloud Platform(GCP)のCloud Machine Learning Engine(CMLE)、特に、ハイパーパラメーターチューニング・サービスを使用している方には、親近感のわく話題かも知れません。
ハイパーパラメーターチューニングとは?
はじめに、機械学習におけるハイパーパラメーターチューニングを復習しておきます。機械学習というのは、なんらかの予測処理を行う数式を多数のパラメーターを含む形で用意しておき、学習用データを用いてこれらのパラメーターを最適化する、すなわち、より正解率の高い予測ができるようにパラメーターをチューニングする仕組みです。また、機械学習ではすべての処理が自動化されていて、学習データを与えるだけで、前述の数式(一般的な用語でいうと、機械学習モデル)が完成すると誤解されることもありますが、実際には、データの特性にあわせて、人間(データサイエンティスト)が試行錯誤で調整するパラメーターもたくさんあります。詳しい説明は省きますが、代表的なハイパーパラメーターには、次のようなものがあります。
この続きは以下をご覧ください
https://www.school.ctc-g.co.jp/columns/nakai2/nakai253.html
ソーシャルもやってます!